
Single and Dual Arm Manipulator Motion Planning Library

Behnam Asadi1

Abstract— In this work a library for solving manipulator motion
planning problems has been developed and an algorithm for imposing
Cartesian constraints in single arm and dual arm operation has been
proposed. The main algorithm is based on RRT [1]. The code has been
tested with several single arm and dual arm robots. Our method is able
to find collision free paths in environments occupied with obstacles.
An example of such an environment is the shelf from the Amazon
picking challenge. The implemented code also enabled us to perform
complicated dual arm operations such as rotating a hand wheel or
opening a drawer.

Keywords: Manipulator motion planning, dual arm operation,
planning under Cartesian constraint, robotics.

I. INTRODUCTION

Nowadays, robots are no longer just machines in factory pro-
duction lines and are gradually entering human everyday life
and taking part in our activities. One of the key challenges for
robots is to solve motion planning problems. The task of motion
planning is to find a path for moving the robot from the start
state to the goal state such that the robot does not collide with
itself or any other object in the environment. Various constraints
including joint, torque, velocity and acceleration limits might be
imposed to the task. A classical example of motion planning is the
piano mover’s problem. In this problem, a piano (3D rigid object)
exists in a room in the presence of some obstacles. The task is
finding a path for moving the piano from start pose to the goal
pose while avoiding obstacles. It has been shown that the piano
mover’s problem is PSPACE-hard [2]–[5]. Motion planning has
many applications in robotics including manipulation, autonomous
cars and also in other fields such as analysis of biological molecules
(protein folding), drug design and computer animation. The rest of
this paper is organized as follows: In section II, we review different
approaches for solving a motion planning task. In section III, the
main pipe line of the library is introduced. In section V, our main
algorithm for dual arm operations and our approach for imposing
constraints is explained. We explain the library functionalities for
motion planning in dynamic environment in section VI. Finally in
section VII, the results of our approach tested on different robots
is reported.

II. AN OVERVIEW OF CURRENT APPROACHES FOR MOTION

PLANNING TASK

Different methods have been suggested for solving a motion
planning task, including combinatorial planning, search based plan-
ning, sample based planning, optimization based planning and
potential fields. In combinatorial motion planning, free space is
decomposed into regions called cells. One popular algorithm for
this purpose is trapezoidal decomposition [6], [7]. Cells with a
common boundary are adjacent. An adjacency graph representing
connected cells (via shared boundary) is being created based on

1Behnam Asadi is a researcher at mathematics and com-
puter science department of university of Bremen, Germany.
behnam.asadi@gmail.com

This work was supported through two grants of the German Federal
Ministry of Economics and Technology (BMWi, FKZ 50 RA 1216 and
FKZ 50 RA 1217).

that. Next, the planner determines the start and the goal cells and
then searches the graph for a path connecting these two cells. As
an advantage, the approach is complete and for problems with
low dimensionality it is extremely efficient. A disadvantage is
that planning becomes impractical as the dimensionality of the
configuration space increases [8], [9]. In search based planning,
the planner discretizes the work space and determines free and
occupied cells. Then it generates a graph representing the planning
problem and searches the graph for a solution. Several methods
have been used for discretization and searching the graph including
SBPL [10], A∗, D∗ [11] and R∗ [12]. Advantages of search based
algorithms are their ability to incorporate various cost functions
and trajectories with natural looking behaviour. The drawbacks
are proper discretization of configuration space (which might be
a complicated task) and defining an appropriate heuristic function.
In sample based method, during the planning phase, the samples
are drawn randomly in configuration space. If a sample is valid
(i.e. no collisions or any other criteria set by the user) and close
enough to the other generated samples (or start and goal states) it
will be added to a tree. The planner continues making samples
and adding them to the tree, until it can find a path from the
start state to the goal state. Trees can be grown from both start
and goal states (bidirectional based planner) and checking for
state validation might be done when a path has been found (lazy
evaluation). Some sample based algorithms are: PRM, EST, RRT,
SRT and their variants. Sample based planners are very robust
for finding a path even in high-dimensional configuration spaces.
On the other hand, these algorithms are probabilistic and the
generated path is usually jerky with redundant movements and
requires smoothing and optimization. A motion planning task can
be seen as leading a particle in a potential field with the same
electric charge towards a goal with opposite charge. The obstacles
will repulse the particle (robot) and the goal will attract it. This
idea has been first introduced in [13] and [14]. The advantage
of potential fields is their simplicity to implement and real-time
computation. The drawbacks are oscillations in an unstable state
and trapping in local minima [15], [16]. The most important issues
that most of the motion planners have taken into account are
joint limits and obstacle avoidance while in many applications
there are other criteria that should be satisfied including constraints
handling, path smoothing and minimization of torque, jerk and
energy consumption. In optimization based planning, the planner
defines a cost function in which the cost is weighted according
to collision, path length, path smoothness, energy consumption
and joint/ torque limits. Then the planner tries to reduce the
cost by calling an optimizer over the generated path. In CHOMP
(Covariant Hamiltonian Optimization for Motion Planning) [17] the
environment is modelled with signed distance field. The planner at
first step creates a naive initial trajectory, from the start to the goal
state. Then it runs a modified version of gradient descent on a
cost function which is a sum of cost of trajectory smoothness and
collision with obstacles (penetration depth). Afterwards the planner
tries to improve the initial path in every iteration. The advantages
of this method is a smooth and natural looking trajectory. Due

to the use of gradient descent, the answer might lay on a local
minimum. STOMP (Stochastic trajectory optimization for motion
planning) [18] relies on an optimizer that can handle cost functions
where their gradients are not available. In STOMP the cost function
is the combination cost of colliding with obstacles (penetration
depth), constraints and torque. The optimizer algorithm explores
the space around an initial trajectory by generating a series of
noisy trajectories. These trajectories are then combined to produce
an updated trajectory with lower cost. Since the STOMP doesn’t
depend on gradients, it can deal with general constraints (i.e. pose
or torque constraints) and it overcomes the local minima problem
of the CHOMP.

III. MAIN ALGORITHM AND PIPE LINE FOR MOTION

PLANNING

We have created our sample based motion planning library based
on OMPL [19] and we have been mainly inspired by MoveIt! [20],
[21] for the main pipeline and architecture, however we have added
support for dual arm operation, imposing Cartesian constraints, self
filtering and planning in a dynamic environment.

OMPL is an open source motion planning library that covers most
of the state of the art sample based motion planning algorithms
and MoveIt! is software for mobile manipulation including tools
for 3D perception, collision checking, solving inverse and forward
kinematics queries and control of the robot.

Due to the dependency of MoveIt! on the ROS framework, it was
not possible to integrate it with our robotic framework, ROCK 1.

As it has been briefly discussed in section II, sample based
motion planners generate random states in configuration space.
Then by applying forward kinematics, we check the validity of
the state (self collision and collision with environment). In the case
of validity of the newly drawn sample, it will be added to the
RRT. This process continues until a path between start and goal
configuration can be found or some termination condition are met
(i.e planning time exceeds maximum allowed time).

A. IK Solver With Minimum Movements and Jerk for High Degree
of Freedom

One of the most important parts of the motion planning problem
is solving inverse kinematic queries. Two main approaches for
solving inverse kinematic problems are numerical solutions and
analytical (closed form) solutions.

KDL [22] (Kinematics and Dynamics Library)2 is a library for
computing forward and inverse kinematic queries with numerical
solutions. Due to recursive nature of numerical solutions for solving
IK problems, they might be very slow or trap in local maxima.
Openrave (Open Robotics Automation Virtual Environment) [23]
is a software for simulating and deploying planning algorithm. It
provides a tool called IKFast which can generate C++ code (inde-
pendent of any library) representing the model of the manipulator
for solving forward and inverse kinematic queries. The generated
code is able to solve the request on the order of 4 microseconds
[24].

One key issue with using IKFast for solving IK queries is
finding proper values for manipulators free joints (redundant joints).
Furthermore, we would like to have a hierarchical structure for free
joints such that the joints that are closer to the root of kinematic
chain have less movements relative to those that are closer to end
effector. The motivation for such a decision is that we like to

1http://rock-robotics.org
2http://www.orocos.org/kdl

have minimum movements and jerk during the manipulation. For
instance, consider a kinematic chain in a humanoid robot from knee
to the right (or left) wrist. In the case we want to use this kinematic
chain for grasping an object, we like to use the joints in the lower
part less (in torso or knee) and use more joints in the arm.

To overcome this issue, we discretize the space between the upper
and lower joint limits for every free joint and search for possible
values starting from either a given configuration (configuration
specified by user or from the IK solution of the previous Cartesian
way point in the trajectory or the middle point between joint lower
and upper bound). This starting point policy is very crucial since
starting from joint lower limit and checking values for solution
toward upper limit will bias the IK solution to the joint limits,
specially when there is more than one free joint in the chain. The
code has been implemented recursively so it is capable of handling
arbitrary number of free joints. Algorithm 1 describes the recursive
function for finding free joints parameter.

Input : Robot model, Vector of free joints, Cartesian pose
Output: Values for free joint, IK solution
Recursive free joints value (values for free joints vector,
index)
if (index > 0) then

while (joint lower bound < pivot+ step) ||
(pivot+ step < joint upper bound) do

step← step+ step size
values for free joints vector.push back(pivot+step)
if recursive free joints value
(values for free joints vector, index-1) then

return true
end
values for free joints vector.pop back()
values for free joints vector.push back(pivot-step)
if recursive free joints value(values for free joints,
index-1) then

return true
end
values for free joints vector.pop back()

end
else

while (joint lower bound < pivot+ step) ||
(pivot+ step < joint upper bound) do

step ← step+ step size
if IKFast(Cartesian pose,values for free joints vector,
pivot+step, index)|| IKFast(Cartesian
pose,values for free joints vector, pivot-step, index)
then

return true
end

end
end
return false

Algorithm 1: Algorithm for finding free joint parameter for IK
queries with IKFast.

IV. MOTION PLANNING UNDER CARTESIAN CONSTRAINTS

Motion planning tasks always come with various constraints.
These constraints make some states impermissible for the robot.
Primitive examples of such constraints are collision avoidance and
joint limits.

In many manipulation tasks some other constraints should also
imposed on the robot to satisfy the problem conditions. Examples

of these are constraints on the orientation of the end effector or on
the X,Y,Z Axis of the end effector.

Various solutions proposed by researchers for imposing con-
straints on EEF in [25]–[28]. These algorithms are either not
efficient or developed for a specific constraint representation [29].
The authors in CBiRRT [30] developed a framework for imposing
constraints represented by TSRs (task space regions). The algo-
rithm has a constraint satisfaction strategy (projection/ rejection)
and general planning algorithm (sample based planner). CBiRRT
employs the robustness of RRT planners to explore the configuration
space and enforce samples with projection/ rejection policy based
on gradient decent [29].

In the motion planning library that we developed, we add the ca-
pability of setting Cartesian constraints for single arm and dual arm
tasks. The main algorithm for motion planning under constraints is
RRT based. The planner always checks if any constraints have been
set during the initialization of planner. In the case a constraint has
been set, the planner will change the sampling space from joint
space to Cartesian space and it plans for the manipulated object. In
other words, the drawn sample represents the object position. The
samples are drawn within the upper and lower bound of imposed
constraint to satisfy the task requirements. The Cartesian constraint
which are imposed to the planner are similar to TSRs in CBiRR.
By having the grasp pose for the object and object pose, the end
effector pose for the arm can be determined. Afterwards, we search
for a valid inverse kinematic solution (by taking into account joints
limit, self collision and collisions with environment). When a valid
solution is found, it will be added to the RRT. If the planner can
find a path between start and goal pose within the time limit for
planning (or before the maximum number of iteration reaches), the
trajectory will be published.

Input : Robot model, motion planning request, Cartesian
Constraint

Output: Collision free trajectory
while Time has left for planning do

Draw a random sample from Cartesian space Between
upper and lower constraint limits;
if There is IK solution for the drawn sample then

Update the robot state with IK Solution
if robot is in self collision state then

if Collisions are not in the allowed collisions list
then

next
end

else if robot is not in Collision with the environment
then

Add the newly drawn sample to the RRT
else

next
end
if There is a valid path between start and goal in RRT
then

publish the path
return

end
end

Algorithm 2: Motion planning under Cartesian constraints algo-
rithm

V. DUAL ARM MOTION PLANNING

While in the domain of robotics, manipulation can be interpreted
as an interaction with an object, dual arm manipulation doesn’t

have a common and general accepted definition [31]. ”In fact,
many authors do not distinguish between multi-agent or multi-arm
systems” [31]. Employing two arms for manipulation has several
advantageous. Using two arms gives the robot more strength (load-
ing a heavy object for example) and for the tasks that are initially
designed for human, it gives robot better dexterity compared to one
arm [31].

The Authors in [32], classified dual arm operation into non-
coordinated manipulation, where each arm is doing separated
motions (manipulating an object with one arm while moving
another object with a second arm for instance), and coordinated
manipulation (opening a bottle of wine for example), in which the
arms are working on the same task. Coordinated manipulation can
be subdivided into goal-coordinated (playing piano, typing with
keyboard) and bimanual manipulation.

In goal-oriented manipulation, in which both arms are solving
the same task, the arms are not physically interacting with each
other. In bimanual operations motion of one arm is widely based
on motions of the other one which might be symmetric, asymmetric,
congruent or non-congruent [32].

In this work, we have designed three scenarios for performing
dual arm operations which requires bimanual manipulation. We
have achieved planning for these tasks by using same code and
only changing the parameters of imposed constraints. The first task
is rotating a hand wheel, the second one is opening/closing a drawer
and the third one is moving an object with both arms while keeping
the orientation. The interaction between EFFs and hand wheel/
drawer is performed via a grasping component which is based on
vision and force control, developed by DFKI 3 research center.

Input : Robot model, motion planning request, Cartesian
Constraint

Output: Dual arm collision free trajectory
while Time has left for planning do

Draw a random sample representing object from Cartesian
space Between upper and lower constraint limits;
if There is IK solution for the drawn sample for the first
arm then

Update the robot state with IK Solution;
if There is IK solution for the second arm from
updated robot state then

if robot is in self collision state then
if Collisions are not in the allowed collisions
list then

next
end

else if robot is not in Collision with the
environment then

Add the newly drawn sample to the RRT.
end

else
next

end
if There is a valid path between start and goal in RRT
then

publish the path return
end

end
Algorithm 3: Dual Arm Motion Planning algorithm

3http://robotik.dfki-bremen.de/en/startpage.html

A. Pre-Scripted vs Constraint Task

In order to perform some dual arm operations, which requires
imposing constraints (for example carrying a glass of water while
keeping the orientation or opening a drawer with both arms) we
have examined two different approaches:

• Pre-scripted planning
• Constrained based planning
In the pre-scripted approach, at first a Cartesian path consisting

of way points (for example a half circle in the case of rotating
a hand wheel or a straight line in the case of opening a drawer
which represent the end effector path) is being calculated. Then by
calling the IK solver, the corresponding joint values are retrieved.
Generalizing tasks with pre-scripted approaches requires calculating
and rewriting new way points for new tasks which limits the
functionality of the code. In the constraint based approach, after
specifying the start and the goal pose, we can define constraints on
X,Y,Z axis and orientation (roll, pitch, yaw) of the object frame.
By changing the values of the parameters, it is possible to reuse
the code for different task.

B. Constraint Based Dual Arm Motion Planning Algorithm

The algorithm for dual arm motion planning under constraints is
similar to the approach that was introduced in section IV, except
that the kienmatic reachability is checked for both arms.

VI. DYNAMIC ENVIRONMENT

During a motion planning task, the robot senses the environment
via its sensors and after finding a path, it executes the trajectory. In
many situations, the state of the environment during the execution
of the trajectory might change, therefore following the computed
trajectory might cause collision. Various approaches have been pro-
posed for modelling obstacles in dynamic environments (completely
unpredictable obstacles, partial predictable obstacle) with different
strategies for planning (probabilistic models, bounded uncertainty
models, game theoretic models and dynamic replanning) [33]. In
a methd called ”Time-bounded lattice for planning in dynamic
environments” [34], the algorithm tries to predict the position of
dynamic obstacles by modelling their trajectories. Then it uses a
time-bounded lattice (a short-term planning in time with longterm
planning without time) for planning and obstacle avoidance. In
some problems, the pose of the obstacles might be dependent on
the pose of the robot (i.e non cooperative game with two players).
For solving such problems, models from game theory have been
used. In [35], the author solved the the problem of capturing an
omnidirectional evader using a DDR (differential drive robot) by
employing such models. The algorithms in [36] and [37] try to
compute an appropriate velocity for the robot such that it dodges
obstacles in a short time step. The D∗ [11] algorithm can handle
the dynamic obstacles found during the execution of the trajectory
so it can be used in unpredictable environments. The algorithm
in [38], combines replanning algorithms with optimization-based
planning to handle dynamic obstacles. The algorithm utilizes the
parallelization on multi GPUs to optimizes multiple trajectories to
generate a high-quality path. Here in this work since our main focus
was not planning in dynamic environments, we have used a simple
yet workable approach. The planner checks the validity of each
state in the trajectory during execution of that trajectory. If some
states are broken, the planner will try to find a collision free path
right before and after the broken state (replanning only over the
invalid states and not whole the path) and update the trajectory.

Input : Robot model, motion planning request,robot
environment point cloud, initial trajectory

Output: Updated collision free trajectory
while execution of trajectory is not finished do

read the trajectory from the planner obtain the point cloud
from sensors, create OctoMap from point cloud update
robot collision checker with acquired OctoMap for every
state in the trajectory do

check the validity of state and mark down invalid
states

end
for every invalid state in the trajectory do

start state ← state right before the invalid state goal
state ← state right after invalid state call the planner
for planning between start and goal state if planning
succeed then

update initial trajectory with newly computed
trajectory

else
cancel the execution of trajectory return false

end
end

end
Algorithm 4: Replanning in dynamic environment algorithms.

VII. EVALUATION AND EXPERIMENTS

To evaluate the robustness and performance of our planner,
we have tested the planner on several robots with 6, 7 and 11
DOF for single arm and dual arm operation. We also designed
several scenarios and experiments to check the success rate and
recorded the required time for planning in a simulation environment.
These experiment have been done on a PC with 64-bit architecture
equipped with Intel Core i7-3770 CPU (3.40GHz) and 7.5 GiB of
ram.

A. AILA

The robot AILA [39], is a dual arm mobile robot developed at
DFKI 4 research center with a total of 70 degrees of freedom: 2
x 7-DOF arms, 4-DOF torso, 2-DOF head, 12-DOF mobile base,
2 x 18-DOF hands. We defined several planning groups including
right arm, left arm and right arm plus foot, knees and torso. The
combination of the two latter groups, make a bigger planning
group with the form of a tree which gives more flexibility for dual
arm operations. In the following we describe the experiments and
outcomes.

1) Bookshelf desk: In this task the planner will try to place
the right arm of the AILA in the middle of a bookshelf desk.
We examined different planners with the maximum time limit of
10 seconds for planning. Note that required time for the whole
task is more than 10 seconds (i.e path smoothing, interpolation, IK
solving). Figures 1 and 2 show the box plot and success rate of
different planners.

2) Amazon Picking Challenge : For this task, first robot places
itself in front of the shelf by using its mobile base, such that the
base link of the robot is in the middle of the shelf columns that
needs to be reached. Then the planner will try to find a collision
free path to place the right arm in the shelves from A to L. For
this task we haven’t set any time limits for planning. Figures 4 and
3 show the the box plot of required time for finding collision free
trajectory from the start pose to the shelves B,E,H,K.

4http://robotik.dfki-bremen.de/en/startpage.html

1 2 3 4 5 6 7 8 9 10
['BKPIECE', 'EST', 'KPIECE', 'LBKPIECE', 'PRM', 'PRMstar', 'RRT', 'RRTConnect', 'RRTstar', 'SBL']

2

4

6

8

10

12

14

16

18

Pl
an

ni
ng

 ti
m

e
in

 s
ec

on
ds

 fo
r r

ig
ht

 a
rm

 to
 re

ac
h

th
e

po
se

.

(a)

Fig. 1: The box plot of planning time for accessing middle point
of a book shelf with different planners.

BKPIECE EST
KPIECE

LBKPIECE
PRM

PRMstar
RRT

RRTConnect
RRTstar

SBL

Planners

0

10

20

30

40

50

N
um

be
r o

f s
uc

ce
ss

 in
 5

0
tim

es
 o

f t
ry

(a)

Fig. 2: Success rate of different planners to access book shelf within
50 times of trial.

B. ARTEMIS

The ARTEMIS5 robot developed by DFKI, consists of a rover
with 6 wheels and 6-DOF manipulator mounted on top of the rover.
We examined the task of carrying an object while keeping the
orientation of the EFF from one side of robot to the other side.
The task achieved by using the algorithm explained in section IV.
Figure 5 illustrates ARTEMIS arm carrying an object while keeping
the orientation.

C. SemProM

The dual arm SemProM-Robot6 which is the predecessor of
AILA, designed for controlling, transportation and gripping of
objects. The robot consists of two 7-DOF schunk lwa, a flexible
head and a base frame. Here we completed the task of opening a
hand wheel and opening (pulling) a drawer by imposing different
constraints and the algorithm explained earlier in section IV. For
example, in order to open a hand wheel, it should rotate π/2 over

5http://robotik.dfki-bremen.de/de/forschung/robotersysteme/artemis.html.
6http://robotik.dfki-bremen.de/en/research/robot-systems/mr-semprom-

1.html.

1 2 3 4
['shelves Names: B, E, H, K']

0

20

40

60

80

100

120

140

Pl
an

ni
ng

 ti
m

e
in

 s
ec

on
ds

 to
 a

cc
es

s
sh

el
ve

s.

(a)

Fig. 3: The box plot of planning time for the shelves B,E,H,K of
Amazon picking challenge.

1 2 3 4
['shelves Names: B, E, H, K']

0

100

200

300

400

500

600

700

800

900

N
um

be
r o

f g
en

er
at

ed
 s

ta
te

 in
 R

R
T

tre
e

to
 a

cc
es

s
ea

ch
 s

he
lv

es
.

(a)

Fig. 4: The box plot of total number of generated state in RRT for
accessing each shelf of Amazon picking challenge.

its x axis. By imposing the constraints in equation 1 , the robot was
able to open a hand wheel.

For the task of opening a drawer, since the only desired move-
ment is in the y axis, simply by setting the constraints on y and
no rotations the task could be accomplished. equation 2 represents
such a constraint.

x : 0.70
y : 0.00
z : 0.00
roll : π/2
pitch : 0.0
yaw : 0.0

 ,

x : 0.70
y : 0.00
z : 0.00
roll : 0.0
pitch : 0.0
yaw : 0.0

 (1)

x : 0.0
y : 1.00
z : 0.00
roll : 0.0
pitch : 0.0
yaw : 0.0

 ,

x : 0.0
y : −1.00
z : 0.00
roll : 0.0
pitch : 0.0
yaw : 0.0

 (2)

Figure 5 illustrates opening a hand wheel by imposing constraints

(a) (b) (c)

(d) (e) (f)

Fig. 5: The robot SemProM (on the top) rotates a hand wheel, the robot ARTEMIS (on the bottom) carries an object while keeping the
orientation. The tasked achieved by employing the algorithm 2 and the constraints from equation 1 and 2.

(a) (b) (c)

Fig. 6: The robot AILA access the shelves B,E,H,K form ”Amazon Picking Challenge Shelf” respectively.

with Mr Semprom.

VIII. ANALYSIS AND CONCLUSION

One common parameter in all RRT based planers is ”range”.
Range is the threshold at which, newly drawn samples with smaller
distance value than that (distance to the closest point in the tree)
will be added to the tree. Selecting big values for range make the
planning time shorter but often creates jerky motions. Selecting
smaller values, will generate more points in the tree and make
the planning time longer. Also a collision might occur in the
space between way points and extra collision checking is required.
Depending on the task, we set different values for this parameter
(maximum 0.2, minimum 0.02). In bookshelf desk experiment
introduced in VII-A.1, although RRT planner requires more time
in comparison with other planners but it provides better success
rate. Since the environment of bookshelf desk experiment was
similar to Amazon Picking Challenge Shelf (cluttered environment,
limited workspace), therefore we used the RRT planner as the main
algorithm for the Amazon picking challenge. In Amazon picking

challenge, accessing the shelf E and K was easier for the robot
(short time for planning, small number of generated states). This
was mainly caused due to specific kinematic model of the robot,
joint limits and collisions around the robot.

For a continues path in Cartesian space the planner may not
generate continues trajectories in joint space. For instance a joint
might reach the joint limits and as a result for the next way point
in Cartesian space, it has to jump to a point which is not along
the previous points. This might violate the consistency of imposed
constraints. To overcome this issue, For start and goal pose we pick
the IK solution that has maximum distances form the joint limits
(for all the joints) and for the way points in the path we pick the
IK solution that has shortest distance to its predecessor.

We also achieved to perform dual arm operation such as rotating
hand-wheel or opening drawer within time limit of 10 to 20
(depending on the robot and imposed constraints). So far by using
RRT based planners, we managed to find a collision free path
between the start and the goal pose. This path usually doesn’t look

natural and contains redundant movements. Furthermore we might
be interested to get a safe trajectory (i.e by keeping the manipulator
links far away as much as possible from obstacles or keeping EFF
away from obstacle in the case of carrying a hazardous or fragile
object) or we might be interested to minimize the planned path or
combination of both (shortest path while keeping distances from
obstacles). This can be achieved by using RRT based optimizing
planners and defining a proper objective function to satisfy the
problem conditions. These objective functions might need specific
approaches for modelling the obstacles in the environment (such
as inflation map or euclidean distance transform) rather than just
dividing the space into free and collision zones. For our future work,
we use optimizing planners and we define new metric for checking
the safety of the trajectory while we try to minimize the planned
path.

REFERENCES

[1] D. Hsu, Randomized Single-Query Motion Planning In Expansive
Spaces. PhD thesis, Department of Computer Science, Stanford
University, 2000.

[2] J. H. Reif, “Complexity of the movers problem and generalizations ex-
tended abstract,” in Proceedings of the 20th Annual IEEE Conference
on Foundations of Computer Science, pp. 421–427, 1979.

[3] “Open motion planning library:a primer.” ompl.kavrakilab.
org/OMPL_Primer.pdf/, 2006.

[4] S. M. LaValle, Planning Algorithms. New York, NY, USA: Cambridge
University Press, 2006.

[5] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer
Academic Publishers, 1991.

[6] F. P. Preparata, M. I. Shamos, and F. P. Preparata, Computational
geometry: an introduction, vol. 5. Springer-Verlag New York, 1985.

[7] R. Seidel, “A simple and fast incremental randomized algorithm for
computing trapezoidal decompositions and for triangulating polygons,”
Computational Geometry, vol. 1, no. 1, pp. 51–64, 1991.

[8] H. M. Choset, Principles of robot motion: theory, algorithms, and
implementation. MIT press, 2005.

[9] S. LaValle, Planning algorithms. Cambridge New York: Cambridge
University Press, 2006.

[10] B. Cohen, S. Chitta, and M. Likhachev, “Search-based planning for
manipulation with motion primitives,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pp. 2902–2908,
2010.

[11] J. Van Den Berg, D. Ferguson, and J. Kuffner, “Anytime path planning
and replanning in dynamic environments,” in Robotics and Automation,
2006. ICRA 2006. Proceedings 2006 IEEE International Conference
on, pp. 2366–2371, IEEE, 2006.

[12] M. Likhachev and A. Stentz, “R* search,” Lab Papers (GRASP), p. 23,
2008.

[13] O. Khatib, “Real-time obstacle avoidance for manipulators and mo-
bile robots,” in Robotics and Automation. Proceedings. 1985 IEEE
International Conference on, vol. 2, pp. 500–505, Mar 1985.

[14] J. R. Andrews, Impedance control as a framework for implementing
obstacle avoidance in a manipulator. 1983.

[15] Y. Koren and J. Borenstein, “Potential field methods and their inherent
limitations for mobile robot navigation,” in Robotics and Automa-
tion, 1991. Proceedings., 1991 IEEE International Conference on,
pp. 1398–1404, IEEE, 1991.

[16] H. Safadi, “Local path planning using virtual potential field,” McGill
University School of Computer Science, Tech. Rep, 2007.

[17] N. Ratliff, M. Zucker, J. Bagnell, and S. Srinivasa, “Chomp: Gradient
optimization techniques for efficient motion planning,” in Robotics
and Automation, 2009. ICRA ’09. IEEE International Conference on,
pp. 489–494, 2009.

[18] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“Stomp: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on, pp. 4569–4574, 2011.

[19] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, pp. 72–82,
December 2012. http://ompl.kavrakilab.org.

[20] I. Sucan, M. Moll, and L. Kavraki, “The open motion planning library,”
Robotics Automation Magazine, IEEE, vol. 19, pp. 72–82, Dec 2012.

[21] I. A. Sucan and S. Chitta, “Moveit!.” http://moveit.ros.org/.
[22] R. Smits, H. Bruyninckx, and E. Aertbeliën, “Kdl: Kinematics and

dynamics library,” Avaliable: http://www. orocos. org/kdl, 2011.
[23] R. Diankov and J. Kuffner, “Openrave: A planning architecture for

autonomous robotics,” Tech. Rep. CMU-RI-TR-08-34, Robotics Insti-
tute, Pittsburgh, PA, July 2008.

[24] “Openrave, ik fast module, openrave documentation.” http:
//openrave.org/docs/latest_stable/openravepy/
ikfast/#ikfast-the-robot-kinematics-compiler,
Cited January 2014.

[25] M. Stilman, “Task constrained motion planning in robot joint space,”
in Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ Inter-
national Conference on, pp. 3074–3081, IEEE, 2007.

[26] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe, “Planning motions
with intentions,” in Proceedings of the 21st Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’94,
(New York, NY, USA), pp. 395–408, ACM, 1994.

[27] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated
approach to inverse kinematics and path planning for redundant manip-
ulators,” in Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on, pp. 1874–1879, IEEE, 2006.

[28] E. Drumwright and V. Ng-Thow-Hing, “Toward interactive reaching
in static environments for humanoid robots,” in Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, pp. 846–851,
IEEE, 2006.

[29] D. Berenson, S. S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” The Interna-
tional Journal of Robotics Research, p. 0278364910396389, 2011.

[30] D. Berenson and S. S. Srinivasa, “Probabilistically complete plan-
ning with end-effector pose constraints,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on, pp. 2724–2730,
IEEE, 2010.

[31] C. Smith, Y. Karayiannidis, L. Nalpantidis, X. Gratal, P. Qi, D. V. Di-
marogonas, and D. Kragic, “Dual arm manipulationa survey,” Robotics
and Autonomous Systems, vol. 60, no. 10, pp. 1340 – 1353, 2012.

[32] D. Surdilovic, Y. Yakut, T.-M. Nguyen, X. B. Pham, A. Vick, and
R. Martin, “Compliance control with dual-arm humanoid robots: De-
sign, planning and programming,” in Humanoid Robots (Humanoids),
2010 10th IEEE-RAS International Conference on, pp. 275–281, 2010.

[33] S. M. LaValle, “Steven m. lavalle.” http://msl.cs.uiuc.edu/
˜lavalle/icra12/, May 2012.

[34] A. Kushleyev and M. Likhachev, “Time-bounded lattice for efficient
planning in dynamic environments,” in Robotics and Automation,
2009. ICRA’09. IEEE International Conference on, pp. 1662–1668,
IEEE, 2009.

[35] U. Ruiz and R. Murrieta-Cid, “A homicidal differential drive robot,” in
Robotics and Automation (ICRA), 2012 IEEE International Conference
on, pp. 3218–3225, IEEE, 2012.

[36] M. Likhachev and D. Ferguson, “Planning long dynamically feasible
maneuvers for autonomous vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.

[37] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments
using velocity obstacles,” The International Journal of Robotics Re-
search, vol. 17, no. 7, pp. 760–772, 1998.

[38] C. Park, J. Pan, and D. Manocha, “Real-time optimization-based
planning in dynamic environments using gpus,” in Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on, pp. 4090–
4097, IEEE, 2013.

[39] J. Lemburg, J. de Gea Fernandez, M. Eich, D. Mronga, P. Kampmann,
A. Vogt, A. Aggarwal, Y. Shi, and F. Kirchner, “Aila - design of
an autonomous mobile dual-arm robot,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pp. 5147–5153, May
2011.

