Author Archives: admin

RGBD PCL point cloud from Stereo vision with ROS and OpenCV

In my other tutorial, I showed you how to calibrate you stereo camera. After Calibration, we can get disparity map and  RGBD PCL point cloud from our stereo camera cool huh 🙂

1)Save the following text under “stereo_usb_cam_stream_publisher.launch

2) Then run the following node to publish both cameras and camera info (calibration matrix)

3) Run the following to rectify image and compute the disparity map:

Super important: If you have USB cam with some delays you should add the following “_approximate_sync:=true”

4) Let’s view everything:

Super important: If you have USB cam with some delays you should add the following “_approximate_sync:=True _queue_size:=10”

5) Running rqt graph should give you the following:

6) Run the to configure the matching algorithm parameter:

7) PCL pointcloud in RVIZ

Stereo Camera Calibration with ROS and OpenCV

In this tutorial, I’m gonna show you stereo camera calibration with ROS and OpenCV. So you need a pair of cameras, I bought a pair of this USB webcam which is okay for this task.

1)Save the following text under “stereo_usb_cam_stream_publisher.launch

2)Then run the following node to publish both cameras.

3)Now call the calibration node:

Super important:

If you have USB cam with some delays you should add the following “–no-service-check –approximate=0.1”

4)Pose the chess board in different position, and then click on the calibrate and save button.

5) The result gonna be store at /tmp/calibrationdata.tar.gz. Unzip the file and save it under “/home/<username>/.ros/stereo_camera_info

How to use OpenCV 3 Contribution Modules

OpenCV Contribution Modules are developed code from the community of OpenCV and are not very stable but after they got stable they will be part f OpenCV. Anyhow, there are a lot of cool modules there (fuzzy logic, sfm, cnn, …) that made me have look at them and try them.

To install them download OpenCV3 and OpenCV’s extra modules.

Make a build directory in OpenCV3 and changed the current directory to that, then run the following command:

 

Open source Structure-from-Motion and Multi-View Stereo tools with C++

Structure-from-Motion (SFM) is genuinely an interesting topic in computer vision, Basically making 3D structure from something 2D is absolutely mesmerizing 🙂

There two open source yet very robust tools for SFM, which sometimes compiling them might be complicated, here I will share my experience with you.

1)VisualSFM

you can see the some of my results here:

2)Colmap

The installation fo this one is almost straightforward except you need the latest version of Ceres Solver (do not use the one binary package from Ubuntu they are old and they won’t work). So download and make and install the Ceres Solver using the following:

Now in the colmap CMakeList.txt add the following line:

just before “find_package(Ceres REQUIRED)”

and now you can make and install it. You can see some of my results here:

In the next post, I will show you how can you do that in OpenCV.

Computing OpticalFlow with OpenCV

There are two main approaches for computing optical flow, computing optical flow for all pixel or computing optical flow for corners.

1. Computing optical flow for all pixel

2. Computing optical flow for corners

 

 

RANSAC Algorithm parameter explained

In this tutorial I explain the RANSAC algorithm, their corresponding parameters and how to choose the number of samples:

N = number of samples
e = probability that a point is an outlier
s = number of points in a sample
p = desired probability that we get a good sample
N =log(1-p) /log(1- (1- e) s )

ref: 1

Finding Homography Matrix using Singular-value Decomposition and RANSAC in OpenCV and Matlab

\(\)

Solving a Homography problem leads to solving a set of homogeneous linear equations such below:

\begin{equation}
\left(
\begin{array}{ccccccccc}
-x1 & -y1 & -1 & 0 & 0 & 0 & x1*xp1 & y1*xp1 & xp1\\
0 & 0 & 0 & -x1 & -y1 & -1 & x1*yp1 & y1*yp1 &  yp1\\
-x2 & -y2 & -1 & 0 & 0 & 0 & x2*xp2 & y2*xp2 & xp2\\
0 & 0 & 0 & -x2 & -y2 & -1 & x2*yp2 & y2*yp2 & yp2\\
-x3 & -y3 & -1 & 0 & 0 & 0 & x3*xp3 & y3*xp3 & xp3\\
0 & 0 & 0 & -x3 & -y3 & -1 & x3*yp3 & y3*yp3 & yp3\\
-x4 & -y4 & -1 & 0 & 0 & 0 & x4*xp4 & y4*xp4 & xp4\\
0 & 0 & 0 & -x4 & -y4 & -1 & x4*yp4 & y4*yp4 & yp4\\
\end{array}
\right) *H=0
\end{equation}

\( H^{*} \underset{H}{\mathrm{argmin}}= \|AH\|^{2}  \) subject to \( \|H\|=1 \)

We can’t use least square since it’s a homogeneous linear equations (the other side of equation is 0 therfore we can’t just multyly it by the psudo inverse). To solve this problem we use Singular-value Decomposition (SVD).

For any given matrix \( A_{M{\times}N} \)

\begin{equation}
\underbrace{\mathbf{A}}_{M \times N} = \underbrace{\mathbf{U}}_{M \times M} \times \underbrace{\mathbf{\Sigma}}_{M\times N} \times \underbrace{\mathbf{V}^{\text{T}}}_{N \times N}
\end{equation}

\(U\) is an \( {M\times M} \) matrix with orthogonal matrix (columns are eigen vectors of A).
\(\Sigma\) is an \( {M\times N} \) matrix with non-negative entries, termed the singular values  (diagonal entries are eigen values of A).
\(V \) is an \( {N\times N} \) orthogonal matrix.

\( H^{*} \) is the last column of \(V \)

Finding homography matrix in Matlab between 4 pairs of points

Finding homography matrix in OpenCV between 4 pairs of points

 

Finding homography matrix in OpenCV between N pairs of points

Applying homography matrix in OpenCV